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Abstract—Selection of a suitable decoupling point for system
partitioning represents one of the challenges in distributed real-
time simulation (DRTS) and (distributed) power hardware in the
loop (D-PHIL) setups. In case of DRTS, the decoupling point rep-
resents the point where system is partitioned between two digital
real-time simulators. In D-PHIL setups, the decoupling point is
a point where a device under test is connected (coupled) to the
rest of the simulated system. This work proposes a methodology
based on the analysis of eigenvalues and participation matrix of
the monolithic continuous model of the system, which refers to
naturally coupled system, to determine the suitable decoupling
point for system partitioning with respect to the simulation
fidelity. Sampling period and delay between subsystems are
considered in the analysis, and decoupling points analysis is
influenced by them. The methodology is validated based on time-
domain simulations.

Index Terms—distributed simulations, real-time simulations,
participation factors, system partitioning, modal analysis, eigen-
value analysis

I. INTRODUCTION

Increased usage of power electronics and renewable energy
sources in modern power system grids posed the need for more
real-time simulation and Hardware-in-the-Loop (HIL) studies
to validate novel concepts and control and protection devices
[1]. A natural extension of a single PHiL setup is connection
and integration of multiple PHiL test benches hosted in
geographically dispersed places [2]. This kind of distributed
setup represents distributed PHiL (D-PHiL) simulation. One
example of distributed PHiL simulation is illustrated in the
Figure 1, and improved version of algorithm presented can be
implemented in these systems.

One of the mayor challenges in distributed real-time sim-
ulations is partitioning of a monolithic model while ensuring
simulation stability and required level of simulation fidelity.
Various methods have been proposed in literature for system
partitioning in different context. In the context of parallel com-
puting [3], partitioning is optimized with respect to CPU load
computation as well as communication between CPUs. With
respect to multi-rate simulation, circuit latency is exploited to
determine subsystems suitable for small and large simulation
time step of multi-rate simulation [4], [5].
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Fig. 1. Distributed PHiL - simple example

The focus of this work is in particular on distributed
real-time simulations and D-PHIL where interfaces between
subsystem partitions incorporate communication time delay
and often lower sampling period compared to the simulation
time step. Thus, criteria for system partitioning in this context
differ from other applications, such as parallel computing. In
this paper modal analysis is applied for system partitioning
on LTI (linear time-invariant) systems with respect to system
dynamics and interactions between subsystems considering
communication delay and sampling period of the interface.

II. MODAL ANALYSIS

A systematic procedure for assigning state variables and
finding the dynamical equations can be found in [6], if a
dynamic system is linear time-invariant electric network. In
case of LTI systems, system can be defined by set of equations
written in state space form as:

ẋxx = A · xxx+B · uuu
yyy = C · xxx+D · uuu

(1)

The poles of system are the eigenvalues of the matrix A.
These poles can be real and complex, and real part of all
system eigenvalues needs to be negative, in order to ensure
stability of the system. If A is real, complex eigenvalues appear
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in conjugate pairs representing one mode. Eigenvalue of matrix
A is scalar parameter λ that fulfill equation:

A ·φφφ = λ ·φφφ (2)

were φφφ is n by 1 vector. To find eigenvalues we can write (2)
in form (A− λ · I) ·φφφ = 0, and for a non-trivial solution:

det(A− λ · I) = 0 (3)

Equation (3) is the characteristic equation with n solutions that
are eigenvalues of A. For any eigenvalue λi, the n-column
vector φiφiφi that satisfies:

A · λi = λi ·φiφiφi (4)

is the (right) eigenvector of A connected with λi. If φiφiφi is right
eigenvector than k ·φiφiφi is as well, where k is scalar. Similarly,
n-row vector ψiψiψi that satisfies:

ψiψiψi ·A = λi ·ψiψiψi (5)

is left eigenvector connected with λi. In order to express the
eigenproperties of A, the modal matrices are introduced:

Ψ =
[
ψT1ψ
T
1ψ
T
1 ψT2ψ

T
2ψ
T
2 . . .ψ

T
nψ
T
nψ
T
n

]T
Φ =

[
φ1φ1φ1 φ2φ2φ2 . . .φnφnφn

] (6)

A. Analysis of eigenvalues

We are considering just stable systems for our test case anal-
ysis, and therefore all the real parts of eigenvalues are negative.
Real eigenvalue λ = σ corresponds to non-oscillatory mode.
Time constant of transient response decay of real eigenvalue
(mode) is − 1

σ . Each complex conjugate pair of eigenvalues
is associated to one complex conjugate mode. For complex
pair of eigenvalues λ = σ ± i · ω, frequency of oscillation is
ω
2π and damping ratio is − σ√

σ2+ω2
. Damping ratio determines

rate of transient response decay of the amplitude of oscillation
of complex conjugate mode. The time constant of transient
response of amplitude decay of osculations for complex con-
jugate mode is − 1

σ .

B. Participation factors

The right eigenvector represents activity of the state vari-
ables when particular mode is excited, where magnitudes of
elements in φiφiφi represent degree of activities of n state variables
in the ith mode, and angles of elements show phase shifting of
the state variables with regard to the mode. Left eigenvector
gives which combination of state variables displays the ith
mode. Doing analysis of connection of system modes and
system states looking individually at right and left eigenvectors
can cause a problem because of scaling and units of state
variables (elements of right and left eigenvectors depend on
units and scaling of state variables). To overcome this issue,
participation matrix [7] is introduced.

P = [p1p1p1 p2p2p2 p3p3p3 . . . pnpnpn] (7)

with

pipipi =


p1i
p2i
...
pni

 =


φ1i · ψi1
φ2i · ψi2

...
φni · ψin

 (8)

where φki is the kth element of right eigenvector φiφiφi and ψik is
the kth element of left eigenvector ψiψiψi. Element pki = φki ·ψik
is called participation factor. Influence of specific eigenvalues
(poles or modes) on states of the system can be measured using
participation matrix. Participation matrix analysis in this paper
is performed on the monolithic system model in continuous
time domain. Since eigenvectors of the system are the same in
continuous and discrete time domain, therefore participation
matrix is as well. We assume that simulation time step is
small enough comparing to time constants of the system so
that discretization does not influence response of the modes
and continuous eigenvalues can be considered without losing
correctness.

III. APPLICATION OF MODAL ANALYSIS FOR SYSTEM
PARTITIONING

This section introduces a methodology for assessment of
decoupling points for system partitioning in terms of fidelity
and stability of distributed simulation based on modal analysis
of monolithic model, in the literature as well called naturally
coupled system (NCS). The ideal transformer model (ITM) is
assumed to be used as an interface algorithm as represented in
Figure 2, and all the conclusions are derived assuming ITM.
Assumption made is that the voltage and current measure-
ments have no errors. A variable that is transferred from one
subsystem to another is referred to as an interface quantity.
The interface quantity is sampled and delayed before being
applied on the receiving subsystem. The sampling period is
the time difference between two consecutive sending samples
of interface quantity from one subsystem to another.

+

–
Subsystem 1

delay

delay

Subsystem 2

Fig. 2. Distributed simulation or PHiL

Modal analysis for the system partitioning proposed in
this paper includes three parts. First, eigenvalues analysis is
performed. As a second part participation matrix of monolithic
model of the system needs to be defined. Finally, in the third
part, decoupling points are analyzed. The following sections
introduce the three parts of the methodology for analysis of
system partitioning.

A. Eigenvalues analysis

In this work is assumed that the monolithic model is
stable. Thus, all eigenvalues are located in the left half of s-
plane. Critical time constant of the pole (mode) is simulation
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time step needed to correctly simulate dynamics of that pole
(mode). If mode is real (λ = σ), transient response of the pole
decays to 37% of the initial amplitude in one time constant
− 1
σ , and it is supposed that transient response is decayed in 5

time constants, thus in − 5
σ s. To correctly simulate dynamics

of this pole, it is assumed that at least 10 samples of the mode
transient response are needed, therefore time step smaller than
− 1

2σ is required, which represents critical time constant of real
pole. Critical time constant can be found in the same manner
for complex-conjugate eigenvalues pair/mode (λ = σ ± i · ω).
Time step needed to simulate transient response amplitude
decay of this pole is − 1

2σ . Following the rule of the thumb,
simulation time step needed to capture oscillations of the pole
is 10 times smaller than period of oscillation of the mode
(eigenvalue) [8], which results in π

5ω . Smaller value of these
two time steps represent critical time constant of complex-
conjugate mode. Next, modes are characterized as slow or
fast based on time delay and sampling period of interest as it
is explained in Section IV.

B. Participation matrix analysis

Participation matrix is determined as described in Sec-
tion II-B. Participation matrix indicates the association of the
modes identified in the previous section to the states of the
system. Larger participation factor indicates more significant
influence of the mode on the state. Small participation factor
indicates that influence of the mode on the state can be
neglected. Association of the modes to the states is important
aspect to be considered for system partitioning, as it indicates
state dynamics, further explained in III-C.

C. Decoupling point analysis

Decoupling point analysis is performed for every feasible
decoupling point of the circuit. With respect to the selected
decoupling point, coupling mode is a mode that influences
states in both subsystems, and local mode is a mode that
influences states just in one of the subsystems. First, it needs
to be determined if partitioned system is loosely coupled for
this coupling point. Partitioned system is defined as loosely
coupled if all modes are local modes for the selected decou-
pling point and coupling modes do not exist. If the system is
loosely coupled, it should be determined if there is an interface
quantity that depends on states influenced by fast local modes.
In test cases analyzed in this paper, interface quantity always
depends only on one state and directly represents an interface
state. If an interface state is influenced by fast local mode,
the simulation fidelity can be degraded. Namely, empirical
studies performed show that in such cases artificial dynamic
is introduced for sampling period larger than the critical
time constant of the fast mode influencing interface state.
Artificial dynamic represents the dynamic that does not exist
in monolithic model as presented in Figure 8. If partitioned
system is not loosely coupled for the selected decoupling
point, it should be determined if there are fast coupling modes.
Recommended time delay, under assumption that sampling
period equals one simulation time step, is smaller than critical

time constant of fast coupling mode to ensure stability. With
respect to the sampling period, under assumption that the time
delay is of value of one simulation time step, margin for
ensuring stability is larger, and recommended sampling period
should be smaller than 1.1 · Tc to ensure stability.

Fig. 3. Test case 2 - Participation of modes in states

Let us consider an example of a system with four states
as illustrated in the Figure 3. In this example, two states are
influenced by fast and other two states by slow mode of the
system. In this test case there are three possible decoupling
points: A, B, and C. For decoupling point A, a fast coupling
mode exists and it is expected to be the decoupling point
with the lowest degree of simulation fidelity compared to the
decoupling points B and C. In paper, simulation fidelity refers
to how accurately the system response obtained in distributed
simulation represents the system response of the monolithic
simulation. Namely, in case of decoupling point A, the system
is not loosely coupled and there is a fast coupling mode. For
decoupling point B, system is loosely coupled but interface
quantity (state x2) is influenced by the fast local mode.
For decoupling point C, system is not loosely coupled but,
opposite to the case for coupling point A, the coupling mode
is slow. The methodology proposed in this work suggests that
in addition to analyzing participation matrix and exploiting
points of loose coupling, dynamic of the interface quantities
and coupling modes should be considered. Namely, empirical
analysis indicates that a decoupling point can be a suitable
candidate from perspective of exploitation of loose coupling,
but one can not say that this point provides higher degree of
fidelity than a decoupling point with a coupling mode that is
slow. In such cases, additional analysis is required. Therefore,
for the test case illustrated in the Figure 3, additional analysis
should be performed to determine if decoupling point B or C
provides higher degree of fidelity. With increased delays and
sampling periods it can happen that fidelity is even better for
system partitioned with decoupling point C. Further analysis
of circuit in Figure 3 is provided in IV-A2.

The described methodology provides relative assessment of
decoupling points for system partitioning based on eigenvalues
analysis and participation matrix. Applicability of this method
is broad. It can be implemented for analysis of benchmark
grid models (e.g. IEEE and CIGRE benchmark models) to de-
termine suitable decoupling points for distributed simulation,
PHiL and D-PHiL. Power system simulation solvers based on
state space models can automatically generate eigenvalues and
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state matrix or state matrix of the system can be generated
from nodal matrix [5]. Methodology of system partitioning is
exemplified based on time-domain simulations and applied on
two test cases in IV.

IV. ANALYSIS OF SIMPLE ELECTRICAL CIRCUITS

A digital real-time simulator uses a fixed-step solver, and
therefore simulation time step should be small enough to be
able to simulate the desired dynamics. Common simulation
time step in electromagnetic transient programs (EMTPs) is
50 µs, with which up to 2 − 3 kHz can be simulated based
on a common rule of thumb. To correctly simulate system
response, rule of the thumb suggests time step size of 10 times
smaller value of the period of the fastest frequency following
disturbance [8]. In this work, the dynamics of interest are
considered the same as in EMTP-based simulation. In addition,
the dynamics of interest are divided into fast and slow regions.
Definition of fast and slow dynamics (modes/eigenvalues)
in method proposed in the paper is defined with respect
to maximum sampling period and time delay of interest.
Simulation time step for test cases in this work is ∆t = 50 µs.
Delay and sampling period of interest are defined as kd ·∆t
and ksp · ∆t, respectively. For the test cases in this work,
ksp = kd = k = 25 is defined. Slow modes are modes with
critical time constant larger than k ·∆t = 1.25 ms. Similarly,
a fast mode is a mode with critical time constant smaller than
k ·∆t = 1.25 ms.

A. Test case 1

A simple electrical circuit, illustrated in Figure 4, is se-
lected as test case 1 to demonstrate the method described in
Section III.

Fig. 4. Test Case 1 - simple electrical circuit

Two sets of parameters that result in different system
dynamics are considered and are chosen to give us interesting
dynamics for analysis. Simulations of the circuits were running
2 s, and transient process was initiated with changing the input
V1 from 5 to 4 V at 1 s. Parameters, analysis of system
partitioning and simulation results for test case 1 are given
in the sections IV-A1 and IV-A2.

1) Test case 1.1: Parameters of the circuit for the test case
1.1 and resulting modes are given in the Table I. The system
is characterized by one fast λ1,2 mode and one slow mode λ3.

TABLE I
PARAMETERS FOR TEST CASE 1.1

Test
case Parameters

Modes

eigenvalues Tc type
[ms]

1.1

R1 = 1.0Ω
λ1,2 = −495.0± i · 869.01 0.72 fastL1 = 1.0mH

C = 10.0mF
R2 = 1.0Ω

λ3 = −200.0 2.5 slow
L2 = 10.0mH

Participation matrix for test case 1.1 is:

P =

0.4948 + 0.2934 · i 0.4948− 0.2934 · i 0.0104
0.5050− 0.2875 · i 0.5050 + 0.2875 · i −0.0100
0.0002− 0.0059 · i 0.0002 + 0.0059 · i 0.9996


Participation matrix indicates that fast mode λ1,2 is mainly

associated with states x1 and x2, while its relation with
the state x3 can be neglected. Similarly, slow mode λ3 has
negligible influence on states x1 and x2 and from participation
matrix it can be concluded that it mainly influences state x3.
Figure 5 illustrates the described participation of modes in
states.

Fig. 5. Test case 1.1 - Participation of modes in states

The main characteristics of decoupling point A are listed
below:
• Partitioned system is not loosely coupled
• There is a fast coupling mode with critical time constant

of Tc = 0.72 ms
• Recommended limit for maximum time delay to ensure

stability is Tc = 0.72 ms (if sampling period is equal to
one time step — 0.05 ms)

• Recommended limit for maximum sampling period to
ensure stability is 1.1 · Tc = 0.795 ms (if time delay
is equal to one time step — 0.05 ms)

The main characteristics of decoupling point B are given
below:
• Partitioned system is loosely coupled
• There is a local fast mode with critical time constant of
Tc = 0.72 ms that influences interface state (interface
quantity)

• Recommended limit for maximum sampling period to
avoid artificial dynamic in system response is Tc =
0.72 ms

Following the methodology described in the section III,
the highest degree of fidelity when partitioning the circuit
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illustrated in the Figure 4 is expected to be provided by
decoupling point B. Namely, decoupling point B results in
a loosely coupled system and none of the modes is a coupling
mode. Figure 6 shows time domain response of x2 and
confirms that higher degree of simulation fidelity is achieved
when decoupling point B is used for system partitioning.

1 1.002 1.004 1.006 1.008 1.01

Time [s]

1.4

1.6

1.8

2

2.2

2.4

V
ol

ta
ge

 [V
]

Monolithic simulation
Decoupling point A
Decoupling point B

Fig. 6. Test case 1.1: time domain response of x2 with co-simulation interface
of sampling period 0.05 ms, and time delay of 0.05 ms

As decoupling point A results in a partitioned system
with a fast coupling mode, simulation fidelity is significantly
degraded when interface time delay is increased. For interface
time delay of 0.5 ms, x2 exhibits oscillatory response of very
low degree of simulation fidelity as shown in figure 7. For
interface time delay of 0.75 ms the simulation is not stable,
which confirms that time delay should be smaller than critical
time constant Tc = 0.72 ms of fast coupling mode in case of
decoupling point A.
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Fig. 7. Test case 1.1: time domain response of x2 with co-simulation interface
of sampling period 0.05 ms, and time delay of 0.5 ms

Therefore, for partitioning the circuit illustrated in Figure 4
decoupling point B should be used. In this case, due to the
local fast mode that influences interface state, sampling period
of the interface should be smaller than critical time constant
Tc = 0.72 ms of the fast local mode (for delay of one time
step). Figure 8 shows that for sampling period of 1.0 ms
artificial dynamic is introduced in the response of x2 (interface
state dominantly influenced by fast mode). This dynamic leads
to different shape of time response compared to monolithic one
and therefore affects fidelity of the simulation.
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Fig. 8. Test case 1.1: time domain response of x2 with co-simulation interface
of sampling period 1.0 ms, and time delay of 0.05 ms

2) Test case 1.2: Parameters of the circuit for the test case
1.2 and resulting modes are given in the Table II. The selected
parameters result in the system with one fast λ1 mode and one
slow λ2,3 mode.

TABLE II
PARAMETERS FOR TEST CASE 1.2

Test
case Parameters

Modes

eigenvalues Tc type
[ms]

1.2

R1 = 1.0Ω
λ1 = −889.11 0.56 fastL1 = 1.0mH

C = 10.0mF
R2 = 1.0Ω

λ2,3 = −104.45± i · 106.66 4.7 slow
L2 = 10.0mH

Participation matrix for test case 1.2 is:

P =

 1.1376 −0.0688 + 0.0142 · i −0.0688− 0.0142 · i
−0.1399 0.5699 + 0.0196 · i 0.5699− 0.0196 · i
0.0022 0.4989− 0.0338 · i 0.4989 + 0.0338 · i


As indicated in the participation matrix, the state x1 is

mainly influenced by the fast λ1 mode. The slow λ2,3 mode
is associated with the states x2 and x3 while its influence
on the state x1 can be neglected. The described participation
of modes in the states for test case 1.2 is illustrated in the
Figure 9.

Fig. 9. Test case 1.2 - Participation of modes in states

As a result of analysis based on dynamics of modes and
participation matrix, characteristics of decoupling point A are
given below:
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• Partitioned system is loosely coupled
• There is a local fast mode with critical time constant of
Tc = 0.56 ms that influences interface state (interface
quantity)

• Recommended limit for maximum sampling period to
avoid artificial dynamic in system response is Tc =
0.56 ms (for one time step delay)

Characteristics of decoupling point B:
• Partitioned system is not loosely coupled
• There is one coupling mode that is slow
In case of decoupling points with characteristics as given

above, additional analysis is required to select the point for
system partitioning that provides higher degree of fidelity.
Although decoupling point A results in loosely coupled sys-
tem, system partitioned with decoupling point B has only a
slow coupling mode. Figure 10 confirms that there is no clear
difference in fidelity of the two decoupling points.
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Fig. 10. Test case 1.2: time domain response of x1 with co-simulation
interface of sampling period 0.05 ms, and time delay of 0.05 ms

Furthermore, empirical analysis indicates that decoupling
point B characterized with a slow coupling mode can be a
better choice compared to a decoupling point A that results in
loosely coupled system, especially if time delay is increased.
Similarly, increasing sampling period deteriorates fidelity for
decoupling point A with respect to decoupling point B. Note
that the above conclusions cannot be derived only based on
analysis of participation matrix, since in that case a loosely
coupled point would be selected. Therefore, eigenvalues anal-
ysis is needed in addition to participation matrix assessment
to select a suitable decoupling point.

B. Test case 2

The simple electrical circuit utilized for test case 1 is
extended with an RC branch and used as test case 2 to further
demonstrate the method described in Section III. Figure 11
illustrates the circuit selected for test case 2. Simulation of the
circuit was running 0.5 s, and transient process was initiated
with changing the input V1 from 5 to 4 V at 0.2 s.

Parameters of the circuit for the test case 2 and resulting
modes are given in the Table III. The system has one fast λ1,2
mode and one slow λ3,4 mode.

Fig. 11. Test Case 2 - simple electrical circuit

TABLE III
PARAMETERS FOR TEST CASE 2

Test
case Parameters

Modes

eigenvalues Tc type
[ms]

2

R1 = 1.0Ω
λ1,2 = −451.6± i · 904.79 0.69 fastL1 = 1.0mH

C1 = 1.0mF
R2 = 1.0Ω

λ3,4 = −148.4± i · 85.53 3.35 slowL2 = 10.0mH
C2 = 10.0mF
R3 = 1.0Ω

Participation matrix for test case 2 is:

P =


0.4323 + 0.3231 · i 0.4323− 0.3231 · i
0.5446− 0.2617 · i 0.5446 + 0.2617 · i
0.0234− 0.0608 · i 0.0234 + 0.0608 · i
−0.0003− 0.0006 · i −0.0003 + 0.0006 · i
0.0677 + 0.0277 · i 0.0677− 0.0277 · i
−0.0446− 0.0297 · i −0.0446 + 0.0297 · i
0.4766 + 0.2773 · i 0.4766− 0.2773 · i
0.5003− 0.2752 · i 0.5003 + 0.2752 · i


(9)

Participation matrix indicates that fast mode λ1,2 is mainly
associated with states x1 and x2, while its relation with the
states x3 and x4 can be neglected. Similarly, slow mode λ3,4
has negligible influence on states x1 and x2 and from par-
ticipation matrix it can be concluded that it mainly influences
states x3 and x4. Figure 3 illustrates the described participation
of modes in states. As illustrated in the Figure 3, there are three
possible decoupling points A, B and C.

Following the methodology described in the section III, the
main characteristics of decoupling point A are listed below:
• Partitioned system is not loosely coupled
• There is a fast coupling mode with critical time constant

of Tc = 0.69 ms
• Recommended limit for maximum time delay to ensure

stability is Tc = 0.69 ms (if sampling period is equal to
one time step — 0.05 ms)

• Recommended limit for maximum sampling period to
ensure stability is 1.1 · Tc = 0.759 ms (if time delay
is equal to one time step — 0.05 ms)

The main characteristics of decoupling point B are given
below:
• Partitioned system is loosely coupled
• There is a local fast mode with critical time constant of

0.69ms that influences interface state (interface quantity)
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• Recommended limit for maximum sampling period to
avoid artificial dynamic in system response is Tc =
0.69 ms (if time delay is equal to one time step —
0.05 ms)

Characteristics of decoupling point C:
• Partitioned system is not loosely coupled
• There is one coupling mode that is slow
Decoupling point A is definitely not a suitable candidate

since the partitioned system is characterized with fast coupling
mode with critical time constant of Tc = 0.69 ms. Results
indicate that for decoupling point A, with sampling period of
one time step, system is stable for 0.5 ms delay and unstable
for delay of 0.75 ms. The decoupling point A results in
significantly lower degree of simulation fidelity in comparison
to decoupling points B and C, which can be clearly concluded
based on response of state x2 illustrated in the Figure 12.
If the time delay is equal to one time step (0.05 ms) and
sampling period is increased, empirical results show that the
stability margin is slightly increased from Tc = 0.69 ms to
1.1 · Tc = 0.759 ms. The results confirm that the system is
stable for 0.75 ms, but unstable for 1 ms.
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Fig. 12. Test case 2: time domain response of x2 with co-simulation interface
of sampling periods of 0.05 ms and time delay of 0.5 ms

In the Figure 13 the time response of x2 following the
disturbance can be observed for interface time delay of
0.05 ms and different sampling periods. For sampling period
of 0.75 ms artificial dynamic is significantly visible.

As it is explained in the section III additional analysis is
required to determine the decoupling point that provides higher
degree of fidelity between B and C. Although decoupling point
B results in a loosely coupled system, system partitioned with
decoupling point C has only a slow coupling mode. Empirical
analysis implies that decoupling point C may result in a higher
degree of simulation fidelity compared to the decoupling point
B, in particular for larger values of sampling period and time
delay.

Similarly as for test case 1.2, note that the above conclusions
could not be provided only based on observing participation
matrix. Namely, participation matrix suggests that decoupling
point B is suitable as it results in a loosely coupled system.
However, additional analysis of eigenvalues suggests that
decoupling point C should be considered as well as it has only
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Fig. 13. Test case 2: time domain response of x2 with co-simulation interface
of time delay of 0.05 ms and sampling periods of 0.25 ms, 0.5 ms, 0.75 ms,
and 1.0 ms for decoupling point B

one slow coupling mode and there are not local fast modes
that directly influence interface quantity.

V. CONCLUSION

Our paper focuses on analyzing decoupling points for sys-
tem partitioning regrading fidelity of the simulations taking
into account time delay and sampling period between two
decoupled subsystems. It is important to note that there may
be another factors that influence decoupling point selection
(system partitioning) such as determined point of coupling for
device under test. The methodology proposed in this work
suggests that in addition to analyzing participation matrix and
exploiting points of loose coupling, dynamics of the interface
quantities and coupling modes should be considered. Improved
approach will be implemented on AC systems in order to
investigate results of this analysis on the model of the real
test benches.
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